If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+11w+3=-1
We move all terms to the left:
4w^2+11w+3-(-1)=0
We add all the numbers together, and all the variables
4w^2+11w+4=0
a = 4; b = 11; c = +4;
Δ = b2-4ac
Δ = 112-4·4·4
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{57}}{2*4}=\frac{-11-\sqrt{57}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{57}}{2*4}=\frac{-11+\sqrt{57}}{8} $
| -p-3=16 | | 6(w-8)-2w=-24 | | -3n+21=-3 | | (2x+4)=(3x+3)+(7x-5) | | 6(w-8)2w=-24 | | (3x+3)=(7x-5)+(2x+4) | | (3x+3)=(7x-5)+(2x4) | | 49^x+^4=7^18-^x | | (-15g-4)=(-7)3 | | (7x-5)=(3x+3)+(7x-5) | | 2n^2-5=-77 | | (11x-7)=(3x+17)+(3x+11) | | (3x+17)=(3x+11)+(11x-7) | | 7u+5(u-6)=-38 | | (7x+6)=(3x+14)+(2x+12) | | ¾x=½+⅔x | | (3x+14)=(2x+12)+(7x+6) | | ¾x=⅓+⅔x | | v+24=34 | | 39=47-u | | 24x+22=30 | | (2x+12)=(3x+17)+(10x-1) | | 5(v+3)-2v=21 | | 7x-18=6x-8 | | x-(x•.1)=1750 | | 2(-6x+1)=-94 | | 2(16x+1)=-94 | | 3/2(x-6)^2+9=63 | | -5(6x-1)=245 | | 7x-11+x-25=180 | | 3z=-4z+7z | | -10-10+2f=5f+10 |